Domain-specific conflict adaptation without feature repetitions
نویسندگان
چکیده
منابع مشابه
Domain-specific conflict adaptation without feature repetitions.
An influential account of how cognitive control deals with conflicting sources of information holds that conflict is monitored by a module that automatically recruits attention to resolve the conflict. This leads to reduced effects of conflict on the subsequent trial, a phenomenon termed conflict adaptation. A prominent question is whether control processes are domain specific--that is, recruit...
متن کاملIs conflict adaptation triggered by feature repetitions? An unexpected finding
For decades, cognitive adaptation to response conflict has been considered to be the hallmark of cognitive control. Notwithstanding a vast amount of evidence ruling out low-level interpretations of these findings, disbelief still exists with regard to the underlying cause of the observed effects. Especially when considering cognitive adaptation to unconscious conflict, it is still a matter of d...
متن کاملFeature-Level Domain Adaptation
Domain adaptation is the supervised learning setting in which the training and test data are sampled from different distributions: training data is sampled from a source domain, whilst test data is sampled from a target domain. This paper proposes and studies an approach, called feature-level domain adaptation (flda), that models the dependence between the two domains by means of a feature-leve...
متن کاملDomain Independent Authorship Attribution without Domain Adaptation
Automatic authorship attribution, by its nature, is much more advantageous if it is domain (i.e., topic and/or genre) independent. That is, many real world problems that require authorship attribution may not have in-domain training data readily available. However, most previous work based on machine learning techniques focused only on in-domain text for authorship attribution. In this paper, w...
متن کاملDomain Adaptation with Ensemble of Feature Groups
We present a novel approach for domain adaptation based on feature grouping and re-weighting. Our algorithm operates by creating an ensemble of multiple classifiers, where each classifier is trained on one particular feature group. Faced with the distribution change involved in domain change, different feature groups exhibit different cross-domain prediction abilities. Herein, ensemble models p...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Psychonomic Bulletin & Review
سال: 2011
ISSN: 1069-9384,1531-5320
DOI: 10.3758/s13423-011-0084-y